TECHNICAL MEMORANDUM **DATE** 15/03/2022 **Reference No.** 21467213.C04.2.A.1 TO Joan Plant Nalunaq A/S **CC** Susan Digges La Touche, Ben Hodgetts FROM Gareth Digges La Touche EMAIL gareth.diggeslatouche@wsp.com #### FAILURE MODE AND EFFECTS ANALYSIS FOR NALUNAO MINE ## 1.0 INTRODUCTION Nalunaq A/S has engaged Golder a member of WSP (WSP UK Ltd) to provide support following comments and recommendations provided by DCE/GINR in relation to the Environmental Impact Assessment dated 1 October 2021 ('EIA draft 2') for the Nalunaq mine in southern Greenland prepared by WSP A/S, and the supporting technical background reports, prepared by Golder Associates (UK) Ltd, for the Nalunaq Gold Project. In relation to this, Golder submitted a proposal (reference CX21467213_Change Order 4, dated January 2022) which recommends a Failure Mode and Effects Analysis (FMEA) in relation to site operations. The FMEA is submitted as a requirement to satisfy DCE/GINR requirements for R1.1 and R1.2 as set out in Bach *et al* (2021). ### 2.0 METHODOLOGY An FMEA is a process for assessing the various components of the dry stack tailings facility (DTSF) and associated mine facilities and systems to identify potential, realistic, failure modes. In this case the components include the DTSF, waste rock deposits, the underground mine and above ground infrastructure. Failure modes and their resulting effects on the system are thereafter examined and scored. Failure risk indicators to be examined include flooding, storm effects, mechanical weathering, landslide, climate change and earthquakes. The FMEA incorporates the potential failure modes, the environmental effects of failure, the current (or anticipated) controls or means of prevention of failure and the additional measures that may be put into place to further decrease the potential impact. The scoring system and further explanation for Severity, Probability and Detectability is presented in Table 1. Table 1: Scoring system for Severity, Probability and Detectability | Scoring category | Score | Criteria | |-------------------------------------|-------|---| | Severity (SEV)
How severe is the | 1 | Lasting days or less; limited to small area (metres); receptor of low significance/ sensitivity (industrial area) | | effect? | 2 | Lasting weeks; reduced area (hundreds of metres); no environmentally sensitive species/ habitat) | | | 3 | Lasting months; impact on an extended area (kilometres); area with some environmental sensitivity (scarce/ valuable environment). | | Scoring category | Score | Criteria | |---|-------|--| | | 4 | Lasting years; impact on sub-basin; environmentally sensitive environment/receptor (endangered species/ habitats) | | | 5 | Permanent impact; affects a whole basin or region; highly sensitive environment (endangered species, wetlands, protected habitats) | | Probability (OCC) How frequently is | 1 | The unwanted event has never been known to occur in the industry: or it is highly unlikely that it will occur within 20 years | | the cause likely to occur? | 2 | The unwanted event has happened in the business at some time: or could happen within 20 years | | | 3 | The unwanted event has happened in the business at some time: or could happen within 10 years | | | 4 | The unwanted event has occurred infrequently: occurs in order of less than once per year & is likely to reoccur within 5 years | | | 5 | The unwanted event has occurred frequently: occurs in order of one or more times per year & is likely to reoccur within 1 year | | Detectability | 1 | The unwanted event will be detected and dealt with immediately | | (DET) How probable is it | 2 | The unwanted event is likely to be detected by the current controls in place | | that the failure or cause of the | 3 | The unwanted event could be detected | | failure will be detected? Is it | 4 | The unwanted event is unlikely to be detected | | practical to
mitigate this
failure? | 5 | The unwanted event is extremely unlikely to be detected | The Risk Priority Number (RPN) represents the combined weighting of Severity (SEV), Probability (OCC) and Detectability (DET): $RPN = SEV \times OCC \times DET.$ 15/03/2022 # 3.0 RESULTS The FMEA is presented in Table 2. Table 2: FMEA for Nalunaq Mine and Associated Infrastructure | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |---|--|-------------|---|---|-------------------|---|-----------------------|--|-------------------------|-------------------------------------|---------------------------------| | | Construction,
Operation,
Closure | Exampl
e | What can go
wrong? | What is the impact if the failure mode is not prevented or corrected? | 1-5 | What causes the step to go wrong? | 1-5 | What are the existing controls that prevent the failure mode occurring or detect it should it occur? | 1-5 | number
(SEV x
OCC x
DET) | | | 1 | Construction /
Operation /
Closure | Jetty | Leaks and
spills of
hydrocarbons | Impact to surface waters and ecology, impact to marine life | 4 | Poor handling of
fuels during
refuelling, ruptured
hoses, valve
malfunctions.
Damage to
containers during
transit. | 3 | All fuel transfer areas will be equipped with spill kits, including booms; the handling and managements of chemicals will be controlled to avoid adverse environmental impact. Only defined quantities of diesel will be unloaded to minimize potential impact. Further procedures will be outlined in an Environmental Management Plan (EMP). | 2 | 24 | Water quality will be monitored | | 2 | Construction / operation | Jetty | Ballast water
containing
invasive non-
indigenous
species | Impact to marine life | 4 | Vessels berthing
and discharging
ballast water
containing non-
indigenous
species | 3 | Ships must follow ballast
management to a set standard
and must implement a Ballast
Water and Sediments
Management Plan. | 2 | 24 | | 3 | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |---|--|---------------------------------------|--|--|-------------------|--|-----------------------|---|-------------------------|-------------------------------------|--| | 3 | Construction /
Operation /
Closure | Beach
landing
area | Leaks and
spills of
hydrocarbons | Local impact to soils, impact to surface waters and ecology; potential impact to marine life | 2 | Poor handling of fuels during refuelling, ruptured hoses, valve malfunctions. Damage to containers during transit. | 4 | All fuel transit areas will be equipped with spill kits; the handling and managements of chemicals will be strictly controlled to avoid adverse environmental impact. Only defined quantities of diesel will be unloaded to minimize potential impact. Further procedures will be outlined in an Environmental Management Plan (EMP). | 3 | 24 | Water quality will be monitored | | 4 | Construction /
Operation /
Decommissionin
g | Beach
landing
area | Supply chains
and
distribution | Unable to receive
materials or personnel;
monitoring, supplies or
maintenance could be
disrupted | 4 | High winds and sea conditions could make boat access and egress problematic; climate change / heavy rainfall could cause roads to washout | 5 | Weather monitoring and logistics planning. | 1 | 20 | Helipad to be constructed for use in emergencies, however due to high wind the risk of isolation cannot be completely mitigated. | | 5 | Construction /
Operation /
Decommissionin
g | Camp /
fuel
storage
facility | Leaks and
spills of
hydrocarbons | Local impact to soils, impact to surface waters and ecology | 5 | Poor handling of
fuels during
refuelling, leaks
from containers
within
storage
area. Damage to
facility from
rockfall, debris
flow, avalanche. | 2 | All fuel storage areas to be bunded and transfer areas contained and equipped with spill kits. Tanks are expected to be of the double-wall type, with the primary containment tank surrounded by secondary containment consisting of HDPE membrane and rock filled berms. | 1 | 10 | | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|--|-----------------------|------------------------------|--|-------------------|---|-----------------------|---|-------------------------|-------------------------------------|--| | 6 | Construction /
Operation /
Decommissionin
g | Camp | Rockfall | Fall of loose rock onto people, plant and or infrastructure | 5 | Rockfall,
potentially due to
increase in
weathering due to
climate change | 1 | Monitoring of slopes above for hazard. Active management and engineered rockfall protection. | 1 | 5 | | | 7 | Construction /
Operation /
Decommissionin
g | Camp | Debris flow | Flow of debris slurry
onto people, plant and or
infrastructure | 5 | Flooding / Climate change | 3 | Location away from historic
flow paths. Monitoring of
slopes above. Active
management and engineering
as required | 1 | 15 | | | 8 | Construction /
Operation /
Decommissionin
g | Camp | Avalanche | Fall of snow mass onto people, plant and or infrastructure | 5 | Heavy
rain/snowfall | 4 | An avalanche terrain assessment has been carried out. Caution should be exercised when working in these areas following heavy snowfall. The mine camp should be protected by a berm between the hillside and the camp. Further procedures will be outlined in an Avalanche Management Plan (AMP). | 2 | 40 | Develop
procedures in an
Avalanche
Management Plan
(AMP). | | 9 | Operation | Waste
rock
dump | Rockfall | Fall of loose rock onto people, plant and or infrastructure | 5 | Increased erosion
due to climate
change, vehicle
movements | 3 | Monitoring of slopes above for hazard. Active management and engineered rockfall protection. | 1 | 15 | A detailed rock fall
hazard assessment
will be developed to
inform the design of
rockfall protection
measures including
berms or catch
fences | | 10 | Operation | Waste
rock
dump | Debris flow | Flow of debris slurry
onto people, plant and or
infrastructure | 5 | Heavy
rain/snowfall | 4 | Location away from historic flow paths. Monitoring of slopes above. Active | 2 | 40 | | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|-----------------------|---|--|-------------------|---|-----------------------|---|-------------------------|-------------------------------------|---| | | | | | | | | | management and engineering as required | | | | | 11 | Operation | Waste
rock
dump | Avalanche | Fall of snow mass onto people, plant and or infrastructure | 4 | Avalanche | 3 | Procedures will be outlined in
an Avalanche Management
Plan (AMP). | 2 | 24 | Develop
procedures in an
Avalanche
Management Plan
(AMP). | | 12 | Operation | Waste
rock
dump | Spills and
leaks from fuel
storage and
handling | Local impact to soils, impact to surface waters and ecology | 4 | Poor handling of
fuels during
refuelling, leaks
from containers
within storage
area. | 3 | All fuel storage to be bunded
and transfer areas contained
and equipped with spill kits | 2 | 24 | Water quality will be monitored | | 13 | Construction | DTSF
Area | Erosion,
sediment
transport | Impact to surface waters | 4 | Movement of
vehicles and
materials during
construction of
DTSF foundations | 4 | Berms will be constructed to
divert any runoff into collection
channels (EIA, 2021) | 2 | 32 | | | 14 | Operation | DTSF
Area | Dry stack
weak zones in
areas critical
to dry stack
stability | Potential failure of
slopes of dry stacked
tailings that could affect
people and the
environment | 4 | Insufficient
compaction of
tailings, wet or
frozen conditions | 2 | Compaction procedures, identified area for out of spec material included in detailed design | 1 | 8 | Monitor for potential slope failure | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|--------------|--|--|-------------------|---|-----------------------|--|-------------------------|-------------------------------------|---| | 15 | Construction /
Operation | DTSF
Area | Foundation
material is
unsuitable | Failure of slopes of dry
stacked tailings that
could affect people and
the environment | 4 | Insufficient
geotechnical data | 1 | Good construction
management; adequate
geotechnical data | 2 | 8 | | | 16 | Construction /
Operation | DTSF
Area | Inadequate or
defective
foundation
system | Seepage of tailings
leachate and
contamination of soil and
groundwater | 4 | Insufficient geotechnical data, | 2 | Risk assessment | 2 | 16 | Continued
monitoring of
leachate and
surface water
quality | | 17 | Construction /
Operation | DTSF
Area | Inadequate or
defective
drainage | Insufficient dry stack
drainage leading to a
rise in the phreatic
surface resulting in
failure of slopes of dry
stacked tailings that
could affect people and
the environment | 4 | Insufficient dry
stack drainage | 2 | A hydrological assessment of
the system indicates that the
proposed design operates
effectively | 2 | 16 | Continued
monitoring of
phreatic surface | | 18 | Operation
(Water
Management) | DTSF
Area | Inflows to
sediment
pond exceed
design
capacity of
system | Sediment laden water is discharged to the environment | 4 | High rainfall and/or
snowmelt events | 2 | Water from the sediment pond is discharged by a weir system, with a discharge only proceeding once the water has reached a predetermined level. A water management plan (WMP) has been developed. Further flow and hydrometric monitoring (rainfall, snowfall and pan evaporation) will be undertaken to improve understanding of flows. | 2 | 16 | This is a consideration for extreme event planning. Routine maintenance to ensure that sediment build-up does not occur, and operating capacity maintained. As stated, further flow and hydrometric monitoring (rainfall, snowfall and pan evaporation) will be | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|--------------|---|---|-------------------|---|-----------------------
--|-------------------------|-------------------------------------|---| | | | | | | | | | | | | undertaken to improve understanding of flows. | | 19 | Construction /
Operation | DTSF
Area | Fall of loose
rock onto
people, plant
and or
infrastructure | Local impact to soils and impact to downstream receptors, including the river | 2 | Rock fall | 2 | Careful site choice; good
design; spot areas of rock fall
potential | 3 | 12 | A detailed rock fall hazard assessment will be developed to inform the design of rockfall protection measures including berms or catch fences | | 20 | Construction /
Operation | DTSF
Area | Fall of snow
mass onto
people, plant
and or
infrastructure | Local impact to soils and impact to downstream receptors, including the river | 5 | Snow avalanche | 4 | Careful site choice; good design; carry out slope assessment following heavy snowfall. Further procedures will be outlined in an Avalanche Management Plan (AMP). | 2 | 40 | Develop
procedures in an
Avalanche
Management Plan
(AMP). | | 21 | Construction /
Operation | DTSF
Area | Dust emission | Potentially contaminative dust released to atmosphere | 3 | Surface
desiccation
leading to
uncontrolled dust
emissions
particularly during
strong wind events | 4 | Appropriate compaction and materials management; surface is unlikely to become dry enough for dust emissions to arise and, if unusually dry, surface can be sprayed with water | 2 | 24 | Procedures to be
specified in an
Environmental
Management Plan | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|--------------|---|--|-------------------|---------------------------|-----------------------|---|-------------------------|-------------------------------------|--| | 22 | Construction / Operation | DTSF
Area | Inundation of DTSF resulting in contaminants entering flood water | Contaminants enter flood waters. Impact to soils and impact to downstream receptors, including the river | 2 | Flooding / Climate change | 1 | DTSF raised above 1:1000 flood level. Minimise contact water by intercepting flows upgradient of the DTSF and processing plant and divert them away; DSF is protected from the maximum flood event by an outer berm; flood armouring. | 2 | 4 | Surface runoff from catchment areas upgradient of the proposed DTSF and Process Plant facilities will be intercepted by a series of diversion channels and drains, and then conveyed to the Kirkespir river. "Contact" water from the top surface of the DTSF stack will be discharged to a proposed settling basin ("Sediment Pond"). Water in the Sediment Pond will then be allowed to discharge through a weir to a receiving channel, which in turn discharges to the Kirkespir river. All these measures should mitigate risk of contamination of the river. Environmental monitoring procedures to be specified in an Environmental Management Plan | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|--------------|---|---|-------------------|--|-----------------------|--|-------------------------|-------------------------------------|--| | 23 | Operation | DTSF
Area | Scour
damage to
DTSF
Embankment
Face | Damage to DTSF
leading to potential
release of tailings with
environmental damage,
high capital costs and
potential mine shut down | 4 | Periods of high
river flow/ flooding
/ climate change | 4 | Conservative assessment for rip-rap requirements. Riprap will be placed upon a geofabric filter material, between toe and crest of embankment to a minimum height of 300 mm above the peak design flood level | 1 | 16 | Inspection following high flow events | | 24 | Operation | DTSF
Area | Scour damage
to DTSF
Embankment
Toe | Damage to DTSF
leading to potential
release of tailings with
environmental damage,
high capital costs and
potential mine shut
down | 5 | Periods of high
river flow/ flooding
/ climate change | 4 | Assessment of scour depth, incorporating a Factor of Safety of 1.5 carried out. Assessment indicates that the installation of a Scour Apron will represent a suitable option to protect the toe of the embankment. | 1 | 20 | Installation of a
scour apron is
required to protect
the toe of the
DTSF. Routine
inspection /
maintenance | | 25 | Operation | DTSF
Area | Leachate
seepage from
the DTSF is of
a poorer
quality than
predicted | Concentrations of potential contaminants of concern (PCOCs)may exceed Greenland water quality guidelines, with the potential to adversely impact the ecosystem of the river | 5 | The source term for the DTSF leachate may be incorrect; flow in the Kirkespir River may be lower than predicted. | 4 | An assessment has been undertaken that suggests that downgradient concentrations of PCOCs in groundwater without any low permeability engineered liner are within Greenland limits for water quality even at low flow conditions. Source terms have been derived from the most recently available geochemical test data (SGS, 2020) and therefore the source term is unlikely to be significantly different to that presented. Source term is more likely to represent a conservative estimate, as leachate values are calculated using mass | 1 | 20 | Current process controls (geochemical analysis and assessment) are likely to be sufficient to prevent failure. Environmental monitoring procedures to be specified in an Environmental Management Plan | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|--------------|--|---|-------------------|--|-----------------------|---|-------------------------|-------------------------------------|--| | | | | | | | | | concentrations and partition coefficients. | | | | | 26 | Operation | DTSF
Area | Damage to
haul road,
DTSF
untrafficable
due to rainfall | Damage is likely to vary
between minor, to
extensive, leading to
lack of mine access and
egress for workers and
equipment. | 4 | Long period of
heavy rainfall | 2 | Installation of diversion
channels designed to carry
flows generated by 1 in 1000
year event prior to spilling | 1 | 8 | Consider access road design
optimisation as design progresses. | | 27 | Operation | DTSF
Area | Damage to
haul road,
DTSF
untrafficable
due to rock fall | Minor damage to road,
minor access issues | 2 | Rock fall | 2 | Careful site choice; good
design; spot areas of rock fall
potential | 3 | 12 | Consider access road design optimisation as design progresses. | | 28 | Operation | DTSF
Area | Damage to haul road, DTSF untrafficable due to avalanche | Disruption to supply chains and distribution routes. Damage is likely to vary between minor, to extensive, leading to lack of mine access and egress for workers and equipment. | 2 | Snow avalanche | 1 | Procedures will be outlined in
an Avalanche Management
Plan (AMP). | 3 | 6 | | | 29 | Operation | DTSF
Area | Damage to
bridges,
erosion of
road | Minor damage to road,
minor access issues | 1 | Climate change
leading to more
extreme rainfall,
snow and strong
winds | 4 | Road and bridges to be regularly checked and maintained | 3 | 12 | | | 30 | Operation | DTSF
Area | Spills and
leaks from fuel
storage and
handling | Local impact to soils, impact to surface waters and ecology | 1 | Poor handling of
fuels during
refuelling, leaks
from containers | 4 | All fuel storage to be bunded
and transfer areas contained
and equipped with spill kits | 2 | 8 | Environmental
monitoring
procedures to be
specified in an | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|------------------|--|---|-------------------|--|-----------------------|---|-------------------------|-------------------------------------|---| | | | | | | | within storage area. | | | | | Environmental
Management Plan | | 31 | Operation | Process
plant | Escape of process water into the environment | Local impact to soils, impact to surface waters and ecology | 4 | Damage to plant
by flooding,
rockfall, debris
flow, avalanche | 3 | The process water is designated as non-lethal and unlikely to impact adversely upon the recipient surface water receptors. The concentration of reagents in the effluent is low. | 1 | 12 | All potential causes of damage will be mitigated, but are still possible; process water is designed as non-lethal. Environmental monitoring procedures to be specified in an Environmental Management Plan | | 32 | Operation | Process
plant | Process Plant is flooded | Damage to process plant; potential impact upon operational capability; potential escape of process water; potential injury to workers | 3 | Flooding | 3 | Flood risk assessment. Process building is constructed on an engineered platform built above the 1:1000 year event flood line. A diversion channel will intercept water from the hillside and channel it along the western edge of the process plant; the channel has been designed to convey the 1 in 1000 year event. | 2 | 18 | There will be an ongoing assessment of potential risk; although all potential causes of damage will be mitigated, ongoing monitoring of water levels and quality will be specified as part of an Environmental Management Plan. | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|------------------|--|---|-------------------|---|-----------------------|---|-------------------------|-------------------------------------|--| | 33 | Operation | Process
plant | Rockfall
above process
plant | Process plant is damaged; workers may be injured or killed; potential escape of process water; chemicals may be released into the environment | 3 | Rockfall | 3 | Careful site choice; good design; spot areas of rock fall potential. Beneficiation process relies on a flotation process. Major process area will be surrounded by containment. | 2 | 18 | A detailed rock fall hazard assessment will be developed to inform the design of rockfall protection measures including berms or catch fences. | | 34 | Operation | Process
plant | Avalanche
above process
plant | Process plant is
damaged; workers may
be injured or killed;
chemicals may be
released into the
environment | 5 | Snow avalanche/
high snowfall | 3 | Careful site choice; good design. Further procedures will be outlined in an Avalanche Management Plan (AMP). | 2 | 30 | Develop
procedures in an
Avalanche
Management Plan
(AMP). | | 35 | Operation | Process
plant | Debris flow
above process
plant | Process plant is
damaged; workers may
be injured or killed by
flow of slurry; chemicals
may be released into the
environment | 5 | Flow of debris
slurry above plant | 2 | Careful site choice; good
design; spot areas of debris
flow paths | 2 | 20 | | | 36 | Operation | Process
plant | Spills and
leaks from fuel
and chemical
storage and
handling | Local impact to soils, impact to surface waters and ecology | 5 | Poor handling of
fuels during
refuelling, leaks
from containers
within storage
area. | 2 | All fuel storage areas to be bunded and transfer areas contained and equipped with spill kits; the handling and managements of chemicals will be strictly controlled to avoid adverse environmental impact, Fuel will be stored in double-walled tanks. Mixed reagents will be located in containment areas in the process plant. | 2 | 20 | Environmental
monitoring
procedures to be
specified in an
Environmental
Management Plan. | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|---|------------------------------------|--|-------------------|---|-----------------------|---|-------------------------|-------------------------------------|---| | 37 | Operation | Process
plant | Release of dust | Local impact from dust
to surrounding soils,
ecology and surface
waters | 4 | Release of dust
from stockpiles
external to mill and
from the
processing facility | 3 | The processing facility is to be covered by a dome building and will be equipped with a dust suppression system. | 1 | 12 | | | 38 | Operation | Process
plant | Escape of waste to the environment | Potential release of waste into the environment with impact to surface waters and ecology | 1 | Damage to waste containment area by flooding, rockfall, debris flow, avalanche or high winds | 3 | Waste to be kept in contained facility; tailings from process will be transported to DTSF | 1 | 3 | Environmental
monitoring
procedures to be
specified in an
Environmental
Management Plan. | | 39 | Operation | Process
plant | Fire | Potential release of
waste/chemicals/process
water into the
environment with impact
to surface waters and
ecology | 1 | Electrical
malfunction;
ignition of
flammable
reagents/fuel | 3 | Process building is constructed of non-combustible material; fire protection system consists of fire hose stations and fire water tanks. | 1 | 3 | | | 40 | Operation | Mine
undergr
ound
working
s | Groundwater
Inrush to Mine | A
sudden incursion of water and/or non cemented backfill and tailings into the mine, endangering workers and equipment. | 3 | The presence of
weak ground or
fractures / faults
between two areas
of working | 2 | A groundwater inrush assessment has been carried out due to the proximity of the Valley Block to the flooded South Block. Assessment indicates risk is low. Geotechnical mapping and ongoing monitoring to mitigate risk during operations. | 1 | 6 | During development of Valley Block water levels in existing workings will be monitored as will geotechnical ground conditions during development. | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|---|---|--|-------------------|---|-----------------------|---|-------------------------|-------------------------------------|--| | 41 | Operation | Mine
undergr
ound
working
s | Groundwater
inflows to
mine are
greater than
expected | Higher groundwater inflows could give rise to higher than estimated water management requirements downstream from the mine. May need increased pumping capacity within the mine. Increase in water treatment capacity may be needed. | 4 | Conceptual
hydrogeological
model may be
incorrect; may
intercept
preferential flow
paths; climate
change | 1 | Groundwater inflows have been calculated, via a variety of methods, to inform water management requirements. Monitoring is recommended upon restart of operations such that inflow estimates and our understanding of the response of the mine to rainfall events is refined. | 1 | 4 | Monitoring points and v-notch weirs to be installed to refine estimates. | | 42 | Operation | Mine
undergr
ound
working
s | Groundwater
flows to mine
are less than
expected | Water is insufficient for
mine water demands;
supplementary supply
wells may be required | 2 | Conceptual
hydrogeological
model and
calculations may
contain
inaccuracies | 2 | An assessment of supplementary water requirements was undertaken. | 3 | 12 | | | 43 | Operation
(Water
Management) | Mine
undergr
ound
working
s | Mine floods
due to failure
of
management
controls and
or equipment | Causes sediment and/or
holding pond to become
inundated, resulting in
high sediment laden
water being discharged
to Kirkespir River. | 2 | High rainfall and/or
snowmelt events | 2 | A water management plan
(WMP) has been developed | 3 | 12 | This is a consideration for extreme event planning. Routine maintenance to ensure that sediment build-up does not occur, and operating capacity maintained | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|---|--|---|-------------------|--|-----------------------|---|-------------------------|-------------------------------------|--| | 44 | Operation
(Water
Management) | Mine
undergr
ound
working
s | Groundwater
inflows of poor
quality
discharged to
the
environment | Concentrations of potential contaminants of concern (PCOCs)may exceed Greenland water quality guidelines, with the potential to adversely impact the ecosystem of the river | 4 | Lack of monitoring; groundwater of different quality to that previously assessed is encountered; spillage of chemicals / hydrocarbons has occurred | 1 | Water quality monitoring data (four spot measurements) for the Kirkespir River has been assessed; further water quality monitoring will be undertaken | 3 | 12 | Water quality monitoring will be ongoing. Environmental monitoring procedures to be specified in an Environmental Management Plan. | | 45 | Operation | Mine
undergr
ound
working
s | Rock rockfall | Risk to workers, impact to operations | 4 | Changing precipitation patterns (periods of increased rainfall due to climate change) causing increased degradation in workings. | 2 | Geotechnical assessment;
previous experience | 2 | 16 | | | 46 | Operation | Mine
undergr
ound
working
s | Collapse of
drives, adits or
stopes | Complete collapse impacting resources and production rates; fall of loose rock onto people, plant and or infrastructure | 4 | Breakdown in process (i.e. ground support installations or checking and replacing old ground support). Poorer and/or deterioration of ground conditions than expected/identified leads to application of | 2 | Rehab and installation of adequate support | 3 | 24 | | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|---|--|---|-------------------|--|-----------------------|---|-------------------------|-------------------------------------|---| | | | | | | | inadequate ground
support in some
areas of the mine | | | | | | | 47 | Operation | Mine
undergr
ound
working
s | Water inrush | Contaminated water lost
to the environment;
inundation of workings or
part of workings | 4 | Potentially caused
by instability /
deterioration of
bulkhead or
encountering
preferential flow
feature | 2 | Assessment of geology,
hydrogeology and bulkhead;
monitoring of South Block
water levels and surface water
quality | 1 | 8 | Ongoing monitoring
of water levels and
bulkhead is
recommended | | 48 | Operation | Mine
undergr
ound
working
s | Collapse of
mine bulkhead
on 300 level | Release of unconsolidated tailings within the block mining area; flooding of lower sections of mine and out of 300m portal affecting people, plant and infrastructure | 5 | Punching shear failure along the rock/concrete contact or through the rock mass, deep beam flexural failure, hydraulic jacking of the rock surrounding the plug, excessive downstream seepage around the plug and possible downstream erosion, long-term disintegration of concrete, such as acid or sulphate attack, and/or | 2 | An investigation into the integrity of the bulkhead did not find excessive seepage and demonstrated that the water was unlikely to attack the concrete (it was not acidic). | 2 | 20 | Ongoing monitoring of bulkhead is recommended | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|---|--|--|-------------------|---|-----------------------
---|-------------------------|-------------------------------------|---| | | | | | | | alkali aggregate reactivity | | | | | | | 49 | Operation | Mine
undergr
ound
working
s | Acid
generation
from mine
waste
disposed of
within mine | Acid mine drainage and leachate impacting surface waters and ecology | 4 | Mine waste has a different geochemical composition from that tested | 2 | Historical water quality testing carried out annually since 2004, as well as more recent geochemical testing and assessment, has determined that the mine waste at Nalunaq is not acid generating. It is therefore unlikely that the mine waste generated would be of a different composition and acid mine drainage generated. | 2 | 16 | Environmental
monitoring
procedures to be
specified in an
Environmental
Management Plan. | | 50 | Operation | Mine
undergr
ound
working
s | Escape of
chemicals
used in
blasting
activities | Groundwater contamination by nitrates | 5 | Damage to
explosives
storage, spillage of
emulsion | 1 | Emulsion will be used for blasting activities and this is surrounded by a film of oil which will minimise contact with water sources and also has a low capacity to release nitrogen to the water sources. Spillage kits will be available, and any spillage will be cleaned up using cat litter, bentonite or similar and disposed of in accordance with available guidance. | 1 | 5 | | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|---|--|---|-------------------|---|-----------------------|--|-------------------------|-------------------------------------|---| | 51 | Operation | Mine
undergr
ound
working
s | Spills and
leaks from fuel
storage and
handling | Local impact to soils, impact to surface waters and ecology | 2 | Poor handling of
fuels during
refuelling, leaks
from containers
within storage
area. | 3 | All fuel storage areas to be bunded and transfer areas contained and equipped with spill kits; the handling and managements of chemicals will be strictly controlled to avoid adverse environmental impact. Tanks will be of the double-walled type. | 1 | 6 | | | 52 | Operation | Mine
Portal | Rockfall | Fall of loose rock onto people, plant and or infrastructure | 5 | Rockfall; potential
increase in
weathering due to
climate change | 3 | Monitoring of slopes above for hazard. Active management and engineered rockfall protection. | 2 | 30 | Alternative emergency egress to be mainatained. | | 53 | Operation | Mine
Portal | Debris flow | Flow of debris slurry
onto people, plant and or
infrastructure | 5 | Debris flow above plant; climate change | 1 | Location away from historic
flow paths. Monitoring of
slopes above. Active
management and engineering
as required | 2 | 10 | Alternative emergency egress to be maintained. | | 54 | Operation | Mine
Portal | Avalanche | Fall of snow mass onto
people, plant and or
infrastructure. Loss of
production | 5 | High snowfall | 3 | Avalanche hazard monitoring and management programme | 2 | 30 | Develop procedures in an Avalanche Management Plan (AMP). Alternative emergency egress to be maintained | | 55 | Operation | Mine
Portal | Spills and
leaks from fuel
storage and
handling | Local impact to soils,
impact to surface waters
and ecology | 4 | Poor handling of
fuels during
refuelling, leaks
from containers
within storage
area. | 3 | All fuel storage areas to be bunded and transfer areas contained and equipped with spill kits; the handling and managements of chemicals will be strictly controlled to | 1 | 12 | Environmental
monitoring
procedures to be
specified in an
Environmental
Management Plan. | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|--|---|--|-------------------|---|-----------------------|--|-------------------------|-------------------------------------|---| | | | | | | | | | avoid adverse environmental impact | | | | | 56 | Operation | Mine
Portal
/undergr
ound
working
s | Avalanche on
southern and
eastern side
of Nalunaq
Mountain,
above access
tracks and
350, 400 and
450 Levels | Could potentially bury,
kill, or injure workers.
Could bury or damage
equipment including
vehicles | 5 | Snow avalanche/
high snowfall | 3 | Slope assessment following heavy snowfall; appropriate route choice and operational controls when working in the area | 3 | 45 | Further procedures
will be outlined in
an Avalanche
Management Plan
(AMP). | | 57 | Operation
(Water
Management) | Mine
undergr
ound
working
s | Blockage
within mine
water
distribution
system | Release of potentially contaminated water | 4 | Damage through
rockfall, freezing
or ice build-up,
pump failure | 2 | Regular checks, redundancy in system | 2 | 16 | Water distribution
systems will be
monitored and
maintained to avoid
build-up of ice or
other obstructions.
Redundancy in
pumping system | | 58 | Operation | Whole site | Sudden
Closure | Dependent upon cause | 4 | Financial pressures, environmental incidents, social incidents, regulatory changes, structural failures | 3 | All environmental controls will remain active (e.g., monitoring and maintenance). Closure planning to incorporate planning for sudden or temporary closure | 2 | 24 | Closure plan to include stated measures in case of temporary suspension of mining or state of inactivity. | | 59 | Operation | Whole site | Loss of power to operations | Potential sudden or
temporary cessation of
groundwater dewatering
(pumping from mine); | 4 | Generator
damaged by
extreme winds, ice
and/or snow | 3 | All environmental controls will remain active (e.g., monitoring and maintenance). Closure planning to incorporate | 2 | 24 | | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|---|---|--|-------------------|---|-----------------------|---|-------------------------|-------------------------------------|--| | | | | | could cause release of contaminated water | | | | planning for sudden or
temporary closure | | | | | 60 | Decommissionin
g and Closure | Mine
undergr
ound
working
s | Instability of
underground
workings | Risk of ground surface
becoming unstable;
rockfall | 1 | Physical (stress)
effects,
deterioration
processes,
potentially
exacerbated by
climate change | 3 | Suitable closure planning | 2 | 6 | Integrated closure
plan will ensure
environmentally
secure closure;
monitoring results
will be incorporated | | 61 |
Closure | DTSF
and rock
dumps | Instability of
surface
landforms,
particularly
DTSF | Risk of ground surface
becoming unstable;
rockfall | 1 | Inadequate
protection, failure
of rip rap or scour
protection,
avalanche,
flooding, erosion. | 3 | Mine Closure Plan. Mine closure planning includes limited final height, berm and batter walls constructed at specified angle for closure, revegetation of walls, rock armouring, capping if specified, revegetation to prevent erosion. | 2 | 6 | Mine closure planning to be an integral part of life of mine. The mine closure plan will be periodically reviewed, amended and updated over the life of mine as necessary. | | # | Phase within
Life of Mine
(LoM) | Area | Potential
Failure
Mode | Potential Failure
Effect | SEVERITY
(SEV) | Potential
Causes | PROBABILI
TY (OCC) | Current process controls | DETECTABI
LITY (DET) | RISK
PRIORITY
NUMBER
(RPN) | Action recommended | |----|---------------------------------------|----------------|---|---|-------------------|---|-----------------------|--|-------------------------|-------------------------------------|---| | 62 | Closure | DTSF /
Mine | Contamination of ground and surface waters | Concentrations of potential contaminants of concern (PCOCs)may exceed Greenland water quality guidelines, with the potential to adversely impact the ecosystem of the river | 5 | Acid Mine
drainage | 4 | An environmental monitoring programme has been in place on site and no detrimental impacts from the historical mining have been identified to date. Materials are classed as inert with respect to ARD potential, and there is a low concentration of the only identified potential contaminant of concern (PCOC). | 2 | 40 | With current process controls damage is considered unlikely. Environmental monitoring procedures to be specified in an Environmental Management Plan. | | 63 | Decommissionin
g and Closure | Whole site | Spillage of oils and chemicals | Contamination of groundwater and surface waters and potential ecological impact | 5 | Spillage or remobilisation of contaminants during decommissioning of storage tanks and oil / chemical storage facilities. | 4 | Careful management during decommissioning of storage facilities | 2 | 40 | Integrated closure
planning and
managed
decommissioning of
hydrocarbon and
chemical storage
facilities to mitigate
risks to
environment | | 64 | Decommissionin
g and Closure | Site
access | Haul road and
bridges
damaged or
blocked | Access removed or restricted, potential injury to workers during decommissioning phase. Could disrupt monitoring activities. | 2 | Flooding, rockfall,
debris flow,
avalanche | 3 | Site is in a suitable location to avoid risk as far as possible | 3 | 18 | | Reference No. 21467213.C04.2.A.1 15/03/2022 ## 4.0 CONCLUSIONS AND DISCUSSION The highest value of RPN is 40. The RPN provides a tool for prioritising additional actions and or implementing or updating current process controls (e.g., ongoing monitoring). The RPN should be used in the prioritisation of risks, and addressing these, rather that identifying risks as 'high', 'medium' etc. By this methodology, areas that represent an elevated risk to the environment have been identified as follows: - The accidental spillage of hydrocarbons may occur at various positions on the site, at all stages through the LoM, from refuelling, transit and storage. Where spillage occurs in the vicinity of the jetty or beach there is the potential for the hydrocarbons to impact a wider area. It is recommended that refuelling is carried out within fully contained areas and that appropriate spill kits are available. - Damage to the DTSF through flooding / periods of high river flow leading to the release of tailings into surface waters is mitigated via engineering, which includes raising it above the 1:1000 year flood level, diverting runoff from upslope, by installation of a scour apron to protect the toe of the embankment and installation of armouring to the embankment face. - Upon closure, the highest potential for environmental impact arises from mine drainage and the decommissioning or removal of hydrocarbon storage tanks and related equipment. The potential for contamination from mine drainage will be mitigated by an environmental monitoring programme for the site as set out in an Environmental Management Plan. Previous monitoring has demonstrated that no significant detrimental impacts from the historical mining have been identified. Geochemical testing carried out to date has demonstrated that materials can be classed as inert with respect to ARD potential, and there is a low concentration of the only identified PCOC. Closure planning will be undertaken as an integrated process and monitoring during site operations together with the results of scheduled kinetic testing will further inform the closure plan. Decommissioning of fuel storage should be undertaken in accordance with a suitable method statement to be protective of the environment. The most significant risks to the project arise from natural hazards such as rockfall, avalanche, debris flow and flooding / high rainfall. Much of the risk from these hazards is mitigated by careful site selection, but ongoing monitoring and management of these hazards will be required throughout the LoM to ensure the safe functioning of the site with no detriment to the environment. ### 5.0 REFERENCES Bach, L, Juncher Jørgensen, C, Bomholt Dyrholm Jacobsen, I, Jia, Y and Nymand, J. 2021. DCE/GINR – Review of "Nalunaq Gold Project. Environmental Impact Assessment 2021. Version 01-10-2021" – draft 2. Aarhus University, DCE - Danish Centre for Environment and Energy. – Scientific note. 26 November 2021 Joan Plant Reference No. 21467213.C04.2.A.1 Nalunaq A/S 15/03/2022 ## Golder, Member of WSP (UK) Ltd Susan Digges La Touche Associate Hydrogeologist SDLT/PA/KB/GDLT/BH Gareth Digges La Touche Technical Director